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Abstract. In many chess tournaments the number of players is much larger than the

number of rounds to be played. In such tournaments the Swiss pairing system is usually

used. This means that players with equal or almost equal scores so far are played against

each others. Moreover, each player should alternately have, if possible, white and black

pieces, and every pair of two players is allowed to play at most once against each others.

This paper shows how the well-known stable roommates algorithm can be used to determine

the pairs in a pairing system similar to the Swiss system.
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1. Introduction

If in a chess tournament the number of players is one bigger than the number of rounds to be

played, the all-play-all system (also called round-robin system) is used, i.e. each player

plays against every other exactly once. If there are more players then some other pairing

system must be applied. The most popular of these pairing systems is the so called Swiss

system. In chapter 1.1. we shortly describe this system. A more detailed description of the

Swiss pairing system is given in [5] and the complete set of pairing rules can be found in

various FIDE (Fédération Internationale des Echecs) documents. Readers unfamiliar with the

chess terminology used in this paper may consult e.g. [3].

The purpose of this paper is to suggest a new pairing system in which we formalize the

pairing process as an instance of the stable roommates problem. In chapter 1.2. we recall the

basic properties of the stable marriage and the stable roommates problems. For further details

concerning these problems and algorithms solving them, see [2].
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1.1. The Swiss pairing system

For the sake of simplicity, we suppose that chess tournaments have an even number n of

players. Players are numbered from 1 to n according to their ratings (by using the

international ELO rating or some of its national variants) so that the player with the highest

rating gets number 1 and the player with the lowest rating gets number n. In the first round

the pairs are (1, n/2), (2, n/2 + 1),..., (n/2 - 1, n). The winner of a game scores one point,

the loser scores nil, and in the case of a draw both players score half a point. In the second

round and in all rounds to come players with equal scores should play against each others.

This is not always possible. An obvious reason is that there can be score groups (i. e.

groups of players with equal number of points) with odd number of players. Second, the

players in a score group may have already played against each others. Third, in addition to

scores we must also take care of the colours (playing with white or black pieces). As far as

possible, at the end of each even round, all players should have had an equal number of

whites and blacks. The colour history tells the colours with which the player has played in

the previous rounds. An alternating colour history (e.g. WBWBW) is the optimal one. There

is a trade-off between the demands concerning scores and colours: is it better to allow a pair

with non-equal scores if it equalizes the colour histories or should we stick with equal scores

although it might mean repetition of colours? The FIDE rules give us some advice in this

trade-off situation. For example, the colour difference, i.e. the difference of games played

with whites and blacks, should not exceed one. Moreover, there are regulations concerning

'floaters', i.e. players who are moved outside their own score groups in order to get

reasonable pairs. Of course, a floater should be chosen such that the choice gives the best

possible balance to the colour histories in question.

The pairing process is supposed to be done manually; FIDE rules say that computers can

only assist the human tournament director who has the final decision in all matters

concerning pairings. In order to keep the pairing algorithm manually feasible, pairing must

be done score group by score group starting at the topmost group and continuing just above

the middle group (the one containing the median player), then going to the lowest group and

continuing upwards. Finally we handle the middle group with all the problematic cases

pushed forward when the other groups were handled. The price paid for keeping the pairing

system manually feasible is that we do not have a global view of the pairing process. This is

recognized in the FIDE rules by adopting an elitistic policy of favouring top ranking players

and players in the topmost score groups. This policy is shown e.g. in the order in which

score groups are handled: the present order guarantees that the players in the topmost score

group are handled in the best possible way. Similarly,  when only one of two colour

histories can be equalized, the rules demand to equalize the colour history of the higher

ranked player.
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We know only one earlier attempt to formalize the pairing process. Ólafsson [5] has

proposed a method using weighted matchings. His method follows the FIDE rules with

respect to the score group handling order. Thus, Ólafsson's method formalizes the trade-off

situation between score proximity and colour equalization separately in each score group.

Contrary to Ólafsson's proposal, we reject the assumption that a pairing system should

imitate the manual system described in the FIDE rules. Hence, our pairing system produces

pairs following the ultimate goals of the Swiss system (players with equal scores should play

against each others, and colours alternate, if possible) without using the handling order

based on score groups.

1.2. The stable marriage and stable roommates problems

An instance of the stable marriage problem consists of two  equal-sized sets of participants,

the men and the women. Associate with each person there is a strictly ordered preference list

containing all members of the opposite sex. Person p prefers q to r if and only if q precedes r

on p's preference list. A matching is a bijective mapping between the sets of men and

women. If man m and woman w are matched in a matching M, then m and w are called

partners in M; this is denoted by m = pM(w) and w = pM(m). A man m and a woman w are

said to block the matching M, if m and w are not partners in M, but m prefers w to pM(m)

and w prefers m to pM(w). If a matching has at least one pair of blocking persons it is

unstable; otherwise it is stable.

Given an instance of the stable marriage problem, the Gale-Shapley algorithm finds a stable

matching in time O(n2), where n is the common number of men and women. For each

instance there exists at least one stable matching and the maximum number of stable

matchings grows exponentially when n grows.

The Gale-Shapley algorithm solving the stable marriage problem could be used in solving the

chess pairing problem as follows. Divide first the set of players into two equal-sized disjoint

sets, the players having white pieces in the the round and the players having blacks. The

preference lists are formed according to the score differences: players having the same score

are in the beginning of the list and the score difference increases towards the rear of the list.

An obvious drawback of this method is that the decision concerning colours (i.e. the division

of the players into the two sets) becomes too dominating factor in the pairing process. A

better balance between scores and colours is obtained by using the stable roommates problem

which is to be described next.

The stable roommates problem is a variant of the stable marriage problem in which each

person in a set (of even cardinality) puts all the other persons to his preference list. A
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matching is now a partition of the set into disjoint pairs. A matching is unstable if there are

two persons who prefer each others to their partners in the matching. As above, such

persons are said to block the matching. If no blocking pairs exist, the matching is stable.

Contrary to the stable marriage problem, the stable roommates problem has instances which

do not admit stable matchings at all. An instance is solvable if it admits a stable matching;

otherwise it is unsolvable.

If an instance admits a stable matching it can be found in time O(n2) [2, 4]. The stable

roommates algorithm deletes the entries from the preference lists until either some list

becomes empty or every list is reduced to a single entry. The former case indicates that no

stable matching exists for the instance in question, and in the latter case entries left in the lists

constitute a stable matching.

In chapters 2 and 3 we consider instances of the stable roommates problem in which the

preference lists are not complete, i.e. all persons  do not necessarily put all other persons to

their preference lists. Naturally, this increases the possibility to have an unsolvable instance.

Before going into the technical details of the new pairing system we give some motivation

for the use of stable matchings. As we have already mentioned, the current FIDE pairing

rules demand a somewhat artificial handling order for the score groups. By using the new

pairing system, we can guarantee a fair treatment for players in all score groups. Moreover,

the following usual and unconvenient (from the tournament director's point of view)

occurrence is impossible: after seeing the pairing for the next round a player complains that

he has wrong colour or that he is paired in a wrong score group, and what is more annoying,

points out another player who would be a more suitable opponent for him according to the

pairing rules and who would also benefit from the rearrangement of the pairs. Such a

situation is impossible if the pairing for the next round is stable. Of course, there can be

unsuitable colours and score groups, but since no blocking pairs are possible, a player

cannot point out another single player who would also benefit from the rearrangement.

2. Making up the preference lists

The crux of our pairing system is of course the method used in  making up the preference

lists. When the lists are completed the outcome of the pairing system is determined by the

normal roommates algorithm. In what follows we describe the main principles used in

ordering the players to the lists. This simplified description disregards some nuances and

fine tunings related to the complete set of FIDE rules. The principles given here for the main

factors (score group and colour) of the pairing process are applicable also for all possible

specialities found from the FIDE rules but these specialities are overlooked here.
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Suppose we are preparing the pairings of the next round in a tournament. We know the

scores and colour histories of every player. In order to formulate the rules used in making up

the lists and to be able to compare different pairing systems we need some notations. The

colour difference of player p, denoted by cd(p), is defined as the the difference of the times p

has so far played with white and black pieces. Notice that after each odd round the absolute

value of colour difference cannot be less than 1. If p and r are players, we define the score

difference of p and r, denoted by sd(p,r), as the absolute value of the difference of their

points so far scored in the tournament.

It is desirable that the resulting pairing does not contain a pair of players with a score

difference much larger than the average score difference. Hence, an additional goal in the

pairing process is to minimize the value
max
p+ r

 sd(p,r),

hereafter denoted as max-sd. In order to minimize max-sd in the new pairing system, we

perform the algorithm so that we first fill in the preference lists only with players in the same

score group. If a stable matching is not found, we gradually increase the allowed score

difference until a stable matching is found. Note that this is by no means in contradiction

with the general policy of handling all players simultaneously and not in score-group-wise:

we do pair all players at the same time but neglect, if possible, pairs with a great score

difference.

We devide the players into five classes depending on their colour differences. The possible

colour differences are 2, 1, 0, -1, -2. As defined above, positive values indicate that a player

has played more often with white pieces and negative values are correspondlingly related

with black pieces. The matrix X shown in Table 1 gives the penalty  related to colour

differences used in a formula to be described below.

X           2            1            0            -1           -2

2 - 4 3 1 0

1 4 6 4 2 1

0 3 4 5 4 3

-1 1 2 4 6 4

-2 0 1 3 4 -

Table 1. The matrix X gives the penalties related to colour differences.

The missing values (denoted by '-') in Table 1 incidate that our system does not allow two

players with colour difference 2 (or -2, respectively) to play against each others. Such a

game would make the colour difference of one of the players in question to be 3 (or -3,
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resp.). If p and r are players, we simply write X[p,r] for the corresponding penalty found in

X (although the rows and columns of X are named after the corresponding colour difference

classes and not directly after the players).

Our system remembers colour histories two rounds backwards. Hence, it is sufficient to

consider the following colour histories: BB, WW, BW, WB, B, and W. Colour histories B

and W are used when finding the pairs of the second round. The matrix Y in Table 2 shows

the cases where an additional small penalty based on colour histories is used. As with X, we

use the notation Y[p,r] for players p and r. If Y[p,r] = s, a small additional penalty is added

to the value used in determining the position of player r in p's list. The missing values in Y

indicate that no additional penalty is used in those cases. The value s used in our tests is s =

0.0001. Y-values are used for breaking ties between otherwise equal players.

Y                          BB         WW       BW        WB        B            W

BB s s s

WW s s s

BW s s s

WB s s s

B s s s

W s s s

Table 2. Matrix Y gives an additional penalty based on colour histories.

For each player p we order the other players in the list of p in ascending order by the values

f(p,r) =   ______␣
6

10␣- ␣c
*  X[p,r] +  c *  sd(p,r) / ms + Y[p,r]

where

c is a coefficient by which we can tune the mutual influence of colours and scores,

and

ms is the maximum score difference allowed when making up p's list; as described

earlier ms increases gradually if stable pairing is not found. If ms = 0, the term c *

sd(p,r) / ms is disregarded.

In our tests we used the value c = 8.7. Decreasing c means that more emphasis is given to

colours, while increasing c means that we stress the effect of scores.
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 3. The tests

The new pairing system was tested in a series of virtual tournaments against Protos [6], a

commercial software certificated by FIDE. The number of players in the tournaments varied

from 16 to 30, and the number of rounds was 5.

The pairings obtained in virtual tournaments were first analysed with two measures, which

were to give us information on the general level. One of these measures was the sum of

score differences of a round Σ sd(p,r). The other measure was the sum of colour differences

Σ cd(p). With both measures it holds that the lower value the better result. The selection of

the measures was guided by the twofold nature of the pairing process. Both of the measures

should be minimized but in most cases reducing one of them rises the other one. This trade-

off is already discussed in section 1.1. In the analysis, only the rounds from two to five

were taken into account. This was due to the use of an identical pairing method in both

programs in the first round.

  2nd round    3rd round    4th round    5th round

16 1 2 1 3

18 1 1 3 3

20 0 1 1 3

22 1 0 1 2

24 1 1 1 4

26 1 0 4 4

28 0 2 3 2

30 1 2 2 3

Table 3. The sums of score differences per round in Stable

Table 3 illustrates the sums of score differences obtained with Stable. The left column

indicates the number of players of a round. The four other columns consist of the values

gained with these different numbers of players in the last four rounds. The sum of score

differences varied from 0 to 4. The average sum was 1.7. In four cases all players played

against a player from their own score group, which is an ideal result.

Table 4 illustrates the same measure in Protos. Even with Protos the range of values was

from 0 to 4. The average sum for Protos was 1.6. The number of ideal results was the same

4 obtained also with Stable. In both Tables 3 and 4 there is a clear trend of obtaining higher

values in the last two rounds. This is the natural consequence of the uneven distribution of
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  2nd round    3rd round    4th round    5th round

16 1 1 1 3

18 1 0 3 2

20 0 1 1 4

22 1 2 2 3

24 1 2 2 3

26 0 1 2 2

28 0 2 2 2

30 1 1 2 2

Table 4. The sums of score differences per round in Protos

scores among the players. The smaller the score groups become the higher is the likelihood

for a player to get an opponent from an other score group than his own.

The sums of colour differences are illustrated by Tables 5 and 6, for Stable and Protos

respectively. Here only rounds 2 and 4 were analysed because in odd rounds each player's

colour difference is 1. In even rounds the value is either 0 or 2. So, these values reveal the

number of players who must have an other colour in the following round. Simultaneously

this value indicates how well the system can alternate the colours of the players. It does not,

however, tell us the total number of players who have played twice with white or black

pieces in the last two rounds. For this we would need to add information of colour histories.

This indicator works anyway quite well also on its own. The results obtained with Stable

and Protos differed from each other in many individual tournaments. The lower values,

however, alternated between the two programs. From the generalized point of view a

difference was found: Stable's average sum was 5.25 and the corresponding value for

Protos was 5.75.

Further, the pairings can be analysed more precisely by concentrating on single pairs instead

of the total pairings of a round. Some of these results even give us deeper understanding on

the pairing result itself. For example, the distribution of the sum of score differences over

single pairs may change the view of the situation radically. As mentioned earlier, one of the

most important measures then is the maximal score difference of a round denoted by max

sd(p,r). Further, the number of pairs having players from two different score groups

completes the picture from the scores point of view. Other measures possible would be an

individual colour difference cd(p) and a shortened colour history of two rounds' ch(p). The

latter would be only a secondary measure used to complete the information given by cd(p).
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  2nd round    4th round

16 0 8

18 4 4

20 4 4

22 0 4

24 8 4

26 4 8

28 4 8

30 12 8

Table 5 The sums of colour differences per round in Stable.

  2nd round     4th round

16 0 8

18 4 4

20 4 4

22 0 4

24 8 4

26 4 8

28 4 8

30 12 8

Table 6 The sums of colour differences per round in Protos.

For example with a cd(p)=1 a player p may have played twice with white pieces in

successive rounds but the only way to be sure of the fact is to check the value of ch(p).

In Stable's pairings the values of max sd(p,r) varied from 0 to 3. The highest value 3 was

obtained only once during the virtual tournaments. A value of the range from 1.5 to 2.5 was

scored 8 times. The desirable situation of having a maximal score difference between 0 and 1

was reached in the remaining 23 rounds but only 4 of these admitted the ideal value 0. The

number of pairs suffering from uneven players varied from 0 to 4. The higher the number of

suffering pairs was, the lower difference was obtained in single pairs excluding the rounds

with the value 0.

In Protos the score differences were more evenly distributed, the highest value obtained was

1. Of the 32 pairings only 4 were ideally paired, admitting no score differences. Due to the

even distribution the number of suffering pairs was higher in relation to the Stable results.

The maximum was nevertheless only 6 pairs.
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4.  Conclusions

The results of the two test programs differed from each other slightly but not significantly.

Particularly the measures used to illustrate the total situations were promising. It seemed that

a few little improvements in making up the preference lists would give us pairings at least as

well as those obtained by using Protos.

However, the results on the pair level were less positive. Mainly the Stable's values of max

sd(p,r) were too high compared with the FIDE rules in too many occasions. The question

raised is how to minimize these values without shortening the preference lists so much that

the instance would have no solution. Further research should be done in making up the

preference lists and in reordering them when no solution is found.

A given instance of the stable roommates problem may have more than one solution (stable

matching). All stable matchings can be found in time O(n3 log n + n2 r) where r stands for

the number of stable matchings [1, 2]. Since we may well allow even 2-3 minutes our

algorithm to find the pairs for the next round, we can also check whether any of the other

possible stable matchings is better than the first one with respect to our measures. (The order

in which the stable matchings are found depends on the structure of a poset formed by

certain operations (called rotations) defined in the preference lists.) However, our tests

indicated that no significant improvment (actually hardly any what so ever) can be obtained

by checking all the stable pairings.
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